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An Integrated Scenario Ensemble-Based Framework for
Hurricane Evacuation Modeling: Part 2—Hazard Modeling

Brian Blanton,1,∗ Kendra Dresback,2 Brian Colle,3 Randy Kolar,2 Humberto Vergara,4

Yang Hong,4 Nicholas Leonardo,3 Rachel Davidson,5 Linda Nozick,6

and Tricia Wachtendorf7

Hurricane track and intensity can change rapidly in unexpected ways, thus making predic-
tions of hurricanes and related hazards uncertain. This inherent uncertainty often translates
into suboptimal decision-making outcomes, such as unnecessary evacuation. Representing
this uncertainty is thus critical in evacuation planning and related activities. We describe a
physics-based hazard modeling approach that (1) dynamically accounts for the physical in-
teractions among hazard components and (2) captures hurricane evolution uncertainty using
an ensemble method. This loosely coupled model system provides a framework for proba-
bilistic water inundation and wind speed levels for a new, risk-based approach to evacuation
modeling, described in a companion article in this issue. It combines the Weather Research
and Forecasting (WRF) meteorological model, the Coupled Routing and Excess STorage
(CREST) hydrologic model, and the ADvanced CIRCulation (ADCIRC) storm surge, tide,
and wind-wave model to compute inundation levels and wind speeds for an ensemble of hurri-
cane predictions. Perturbations to WRF’s initial and boundary conditions and different model
physics/parameterizations generate an ensemble of storm solutions, which are then used to
drive the coupled hydrologic + hydrodynamic models. Hurricane Isabel (2003) is used as a
case study to illustrate the ensemble-based approach. The inundation, river runoff, and wind
hazard results are strongly dependent on the accuracy of the mesoscale meteorological simu-
lations, which improves with decreasing lead time to hurricane landfall. The ensemble enve-
lope brackets the observed behavior while providing “best-case” and “worst-case” scenarios
for the subsequent risk-based evacuation model.
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1. INTRODUCTION

Coastal flooding and high winds during hurri-
cane events can cause substantial damage and hinder
evacuation of threatened coastal areas. Well before
coastal impacts are experienced, the uncertainty in
hurricane trajectory and intensity poses challenges
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for decisionmakers and emergency managers who
need to plan evacuation activities. Hazard modeling
for threatened coastal areas is thus a critical part
of the evacuation planning and decision making.
However, most official evacuation planning studies
use relatively simplified models for hurricane winds
and related factors, such as those provided by (HUR-
REVAC, 2016), and storm surge threat, as provided
by the NOAA Sea, Lake, and Overland Surges from
Hurricanes (SLOSH) (Jelesnianski, Chen, & Shaffer,
1992) model, and they do not include precipitation
and inland waters routing downstream toward
coastal regions. Additionally, there is little (if any)
accounting for uncertainty in storm evolution and
impacts, which is usually relatively large, and thus
evacuation studies do not easily focus on the risk
involved in moving and/or sheltering the population
under threat. Considering that evacuation costs are
generally substantial (Whitehead, 2003), the need
to skillfully simulate potential storm surge, winds,
runoff, and waves is essential for minimizing public
costs to (potentially) avoid unnecessary evacuations.

The companion article by Davidson et al. (2020)
introduces a new integrated, risk-based evacuation
order decision support framework that captures the
dynamic interactions among the natural, human, and
infrastructure systems. The evacuation model within
the framework is a multistage stochastic program
that minimizes the risk for a threatened population,
as well as its total travel time, and is a logical exten-
sion of Li, Xu, Nozick, and Davidson (2011) and Api-
vatanagul, Davidson, and Nozick (2012). The frame-
work offers a substantial advance in the state of the
art by providing a well-hedged solution that is ro-
bust under the range of ways the hurricane might
evolve, and that takes advantage of the substantial
value of increasing information (or decreasing de-
gree of uncertainty) over the course of a hurricane
event. This new approach to evacuation order deci-
sion support would be impossible without a represen-
tation of the hazard that explicitly captures the un-
certainty in the hurricane’s development over time,
a description that did not previously exist. This ar-
ticle focuses on the hazard modeling portion of the
framework, the part that provides that description.
Specifically, the hazard modeling system in this arti-
cle captures uncertainty in the hurricane’s life cycle
through an ensemble of meteorological model per-
turbations (each member of which is also referred to
as a scenario), which, in turn, impacts the overland,
precipitation-driven flooding, the downstream rout-
ing of inland flooding to the coastal ocean, and the

coastal storm surge. It integrates three state-of-the-
art, physics-based numerical models for mesoscale
meteorology, inland rainfall accumulation and rout-
ing, and coastal storm surge, waves, and tides. North
Carolina (NC) coastal counties serve as a test bed
for implementation of the framework. To our knowl-
edge, this comprehensive approach to modeling the
hazard for evacuation modeling and studies is not
used. Typically, catalogs of SLOSH storm surge sim-
ulations and traffic clearance times are used to de-
fine evacuation zones, without consideration of the
potential contributions from riverine inflows to the
coastal zone, fully dynamic tides, and, more critically,
probabilistic assessment of how these hazards evolve
as the event unfolds.

This set of companion articles describes the two
main functional components of the integrated risk-
based system and their interrelationships. Herein,
Part 2 provides a context for the state-of-the-art mod-
eling of natural hazards for hurricane events. After a
brief background in Section 2, the hazard modeling
framework is described in Section 3. A case study
analysis for Hurricane Isabel (2003) in NC is pre-
sented in Section 4.

2. BACKGROUND

The physical interactions between the hazard
components (atmospheric, hydrological, and coastal
oceanic) are typically captured by coupling models
together via input and output file exchange, so-called
loose coupling (as opposed to tight coupling by inte-
grating models at the code level). There are several
examples of such coupled systems for coastal haz-
ards used for predicting coastal impacts from storms
(e.g., tropical cyclones), both in the forecast and
hindcast mode. The Coupled Ocean-Atmosphere-
Wave-Sediment Transport (COAWST) modeling
system (Warner, Armstrong, He, & Zambon, 2010)
couples the Weather Research and Forecasting
(WRF) regional meteorological model (Skamarock
et al., 2008), the wind-wave model Simulating Waves
Nearshore (SWAN) (Booij, Ris, & Holtuijsen,
1999), and the Regional Ocean Modeling System
(ROMS) (Haidvogel et al., 2000) with the Commu-
nity Sediment Transport Model (CSTM) (Warner,
Butman, & Dalyander, 2008). Zambon, He, and
Warner (2014) used the COAWST system to study
the effects of various model coupling configurations
on Hurricane Ivan (2004) impacts, finding that
storm intensity predictions were very sensitive to the
level of coupling between the atmosphere, ocean,



Hurricane Evacuation Decision Support: Part 2 119

and wave field models. Because researchers were
primarily concerned with continental- shelf scale
dynamics, precipitation and hydrological routing
are not included in COAWST. Regional coastal
forecasting systems using COAWST include ones for
the Adriatic Sea (Russo et al., 2013) and the German
Bight (Staneva, Wahle, Günther, & Stanev, 2016).
There are other coupled modeling systems (e.g.,
Beardsley, Chen, & Xu, 2013; Blumberg, Khan, &
St. John, 1999; Herrington, Bruno, & Rankin, 2000)
used in the coastal regions by NOAA to provide
water levels, salinity, temperature, and other water
quality components. Many of these coupled model
systems incorporate the riverine streamflows through
USGS gauge information and do not incorporate
a hydrology model to determine the rainfall-runoff
caused by the storms in the inland areas, which is
necessary to conduct the study presented herein. In
addition, these operational forecast systems are not
typically tailored for tropical cyclones.

The risk-prone NC coast has motivated several
studies on simulations of hurricanes impacting the
state. Peng, Xie, and Pietrafesa (2004) examined
the Pamlico and Albemarle Sounds storm surge
and flooding response to hypothetical hurricanes
represented by a simple parametric vortex wind
model (Holland, 1980), finding, unsurprisingly, that
more extensive flooding occurs with more intense
storm forcing. The western side of Pamlico Sound,
including the Neuse River, was particularly impacted
by inundation, with the inundation extent generally
more sensitive to the hurricane central pressure
as compared to the radius to maximum winds.
Additionally, slower forward storm speed generated
higher surge. Sheng, Alymov, and Paramygin (2010)
simulated the Chesapeake Bay’s and NC Outer
Banks’ response to Hurricane Isabel, using the
Curvilinear-Grid Hydrodynamic 3D (CH3D) and
SWAN models. They found that surge/wave cou-
pling was important along the NC open coast, with
as much as 20% of the total water level accounted
for by wave setup. While these studies are indicative
of the need to couple models in order to adequately
capture uncertainty in simulations of coastal hazards,
they do not systematically address this uncertainty.

Dresback et al. (2013) describe a storm surge and
wave forecasting system that includes ADCIRC and
SWAN, incorporates river discharges from an inland
hydrological model, and is driven by hurricane ad-
visory sequences from the National Hurricane Cen-
ter (NHC). Hurricane winds and pressure fields are
computed from the advisory file by an asymmetric

vortex submodel in ADCIRC, and quantitative pre-
cipitation forecasts (QPFs) from NOAA forced the
hydrology model. Hurricane Irene (2011) occurred
shortly after the system’s implementation, and the
forecast system output over the forecast advisory
sequence was compared to water-level gauges and
high-water marks. Skill increased significantly as the
storm approached the two-day-out point, but earlier
results were still useful for early decision making.

To account for uncertainty in the evolution of
hurricanes and subsequent impacts, ensembles of
simulations can be used, each member of which
either initially contains “small” differences in ini-
tial and/or boundary condition data or different
physics options or parameter settings. This collection
should represent a range of conditions that evolve
differently, based on the dynamics of the models.
Fundamentally, the uncertainty in predictions of
complex systems arises from imperfect knowledge of
the system state at a specific time and location and an
imperfect description of physical process at all spatial
scales. In the atmosphere, for example, observations
of the weather are used to derive initial conditions
that populate the entire spatial domain of a model,
but these observations (1) have error and (2) are
incomplete. Small differences in initial conditions
can lead to large differences in the model results due
to inherent nonlinearities in the system. There are
many examples of recent applications of ensemble
techniques in hazard modeling. Hamill, Whitaker,
Kleist, Fiorino, and Benjamin (2011) showed lower
hurricane track errors and better prediction skill
using ensemble methods to represent different initial
atmosphere states. Villarini, Luitel, Vecchi, and
Ghosh (2016) demonstrate using multiple numerical
models to construct ensembles of predictions of sea-
sonal hurricane activity in the North Atlantic basin.
Regarding coastal storm surge, Di Liberto, Colle,
Georgas, Blumberg, and Taylor (2011) showed that a
three-member ensemble using different storm surge
and atmospheric models could outperform a larger
atmospheric ensemble, and Brown, Souza, and Wolf
(2010) and Horsburgh, Williams, Flowerdew, and
Mylne (2008) showed an increased storm surge
predictability using ensembles. Mel and Lionello
(2014) demonstrate the connection between storm
surge predictions and meteorological uncertainty
with application to the Venice, Italy region.

Although unrelated to coastal U.S. waters
or hurricanes, Flowerdew, Horsburgh, Wilson,
and Mylne (2010) and Flowerdew, Mylne, Jones,
and Titley (2013) demonstrate the need for an
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ensemble-based approach for storm surge predic-
tions. They describe a prediction system for the U.K.
coast that uses Met Office Global and Regional
Ensemble Prediction System (MOGREPS) (Bowler,
Arribas, Mylne, Robertson, & Beare, 2008) to force
the CS3 storm surge model (Flather, 2000). The
resulting storm surge ensemble predictions are
shown to have better statistical skill compared to any
one deterministic simulation. However, their focus
is in larger-scale extratropical and subpolar weather
systems, and thus their need for very high spatial
resolution in the hazard models is somewhat less
compared to simulation and prediction of tropical
cyclones. Relatively high model spatial resolution
for the atmospheric model (≤4 km grid spacing)
is typically required to realistically predict a hurri-
cane (Davis et al., 2008), but realistic tropical cyclone
structures and tracks can be obtained with grid spac-
ings as large as 25 km (Murakami et al., 2015).

3. HAZARD MODELING FRAMEWORK

The main purpose of the hazard modeling is to
provide, to the evacuation model (Davidson et al.,
2020), an ensemble of predictions that represent
the possible ways a hurricane might evolve. Each
prediction is represented with a set of inundation and
wind speed maps, one for each time step over the
life cycle of the hurricane. The model suite consists
of the following three state-of-the-art, physics-based
numerical models: the WRF model, the Coupled
Routing and Excess STorage (CREST) distributed
hydrological model (Wang et al., 2011), and the AD-
vanced CIRCulation model for storm surge, wind
wave, and tide simulation (Westerink et al., 2008).
Fig. 1 shows the spatial coverage of the three hazard
models used and links between the models, and
Table I gives basic model information. The general

Table I. Hazard Model Basic Configuration Information

WRF CREST ADCIRC

Hazard
Mesoscale

Atmosphere
Hydrology,
River Flow

Storm Surge,
Tides, Waves

Primary
inputs

GEFS-R
ensembles

WRF
QPF

WRF
wind/pressure
CREST river

flow
Horizontal 36 & 250 m 20 m upriver
resolution 12 km to 50 km

offshore

workflow is as follows. Simulations of the mesoscale
atmosphere (WRF) produce time-dependent fields
of the dependent variables, such as QPF, sea-level
atmospheric pressure, and the 10-m wind velocity
at a 15-minute interval. QPF is the main input to
the hydrologic model (CREST), which accumulates
the precipitation and routes the inland water runoff
toward the coast. The downstream river runoff is
used by ADCIRC as a boundary condition on inland
rivers, and the WRF wind and pressure fields force
ADCIRC at the surface. ADCIRC dynamically
couples the astronomical tides and wave setup
forcing, and thus represents a prediction of the “total
water level.” This multimodel process is carried out
for each ensemble member run by WRF. This col-
lection of simulations constitutes the different storm
evolutions beginning from the same initialization
time.

This modeling framework is an extension of
Dresback et al. (2013) but with the following dis-
tinctions: (1) wind forcing in the former is devel-
oped using North American Mesoscale (NAM) or
the NHC storm track information and parametric
models, whereas herein we use wind forcing infor-
mation from the WRF; (2) precipitation used the
QPF from the NOAA Hydrometeorological Pre-
diction Center in the former (in forecast mode),
whereas herein the precipitation is computed by
WRF; (3) the National Weather Service/Hydrology
Laboratory-Research Distributed Hydrologic Model
(HL-RDHM) (Koren, Reed, Smith, Zhang, & Seo,
2004) was the hydrologic model used in the for-
mer, while CREST is used herein; (4) the hydrologic
model resolution in the former was set at the 4-km
Hydrologic Rainfall Analysis Project (HRAP) (Reed
& Maidment, 1999) grid, while CREST allows vari-
able resolution (e.g., 250 m for the Isabel case study
below); and (5) ensemble modeling of the fully cou-
pled system is employed herein, which allows meteo-
rological uncertainties to propagate through the sys-
tem, while the former was run in deterministic mode
(with the exception of forcing rivers at the bound-
ary with a 128-member ensemble mean discharge at
handoff points).

We describe the hazard modeling framework
and ensemble generation in Sections 3.1 and 3.2,
respectively, and the Hurricane Isabel (2003) case
study in Section 4. Additionally, we draw a dis-
tinction between storm surge and inundation. We
use storm surge to refer to the total water-level
surface computed by the ADCIRC hydrodynamic
model and referenced to a standard vertical datum
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Fig. 1. Hazard model workflow. WRF computes the mesoscale atmospheric state for each hurricane scenario simulation. QPF fields are
passed to CREST, which computes river flows. WRF sea-level pressure and 10-m wind velocity and CREST river flows are passed to
ADCIRC, which then computes the “total water level,” including astronomical tides, inland runoff, storm surge, and wave setup. Shown are
the WRF spatial grid boundaries, CREST’s primary river delineations along with USGS gauges (black triangles) and transfer points (red
dots) in the Tar and Neuse River basins, and ADCIRC’s high-resolution finite element grid for coastal NC. Main features in the area are
labeled on the ADCIRC figure.

(in this case, mean sea level [MSL]). We use in-
undation to refer to water depth on land, mean-
ing that the topographic elevation has been sub-
tracted from the total water level, thus resulting in
a depth over land, as referenced to the local ground
elevation.

3.1. Hazard Models

3.1.1. Meteorology

Meteorological simulations for each ensemble
member are computed with the numerical weather
prediction model WRF (version 3.6). WRF is de-
signed for research and operations, and is the pri-
mary regional model used by the NOAA NWS for

the United States. It is highly configurable with
different physics, dynamics, and parameterization
schemes, a terrain-following vertical grid, and nest-
ing of inner domains for higher resolution, includ-
ing storm-following nests. WRF can use a large
number of different gridded analyses or operational
model forecasts for initial and boundary conditions.
It solves for (among other prognostic variables) the
east and north components of horizontal momentum,
atmospheric pressure, and water vapor/precipitation
processes, given specification of initial and boundary
data. For this study, WRF is configured in a nested
mode with 36 and 12 km domains. The model top
vertical level is set to 50 hPa, with 45 vertical levels
in total. The ensemble member selection is described
in Section 3.2.
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Table II. Ensemble Member Characteristics Used for Hazard Simulations

Ensemble Number GEFS Cumulus (36/12 km) PBL Microphysics Radiation

1 P1 KF MYJ WSM6 RRTMG
2 P2 KF YSU Thompson RRTMG
3 P3 KF MYNN3 Goddard/3 ice RRTM/D
4 P4 KF BouLac Morrison RRTM/D
5 P5 BMJ MYNN3 Thompson RRTM/D
6 P6 BMJ MYNN3 Morrison RRTMG
7 P7 BMJ BouLac WSM6 RRTMG
8 P8 GD BouLac Goddard/3 ice RRTMG
9 P9 GD YSU WSM6 RRTM/D

10 P10 GD MYNN3 Thompson RRTMG
11 P11 GD MYJ Morrison RRTMG
12 P1 GD MYNN3 Thompson RRTMG
13 P1 BMJ MYNN3 Morrison RRTMG
14 P1 GD YSU Goddard/3 ice RRTM/D
15 P1 BMJ MYJ WSM6 RRTM/D
16 P1 BMJ MYNN3 Goddard/3 ice RRTM/D
17 P2 KF YSU WSM6 RRTM/D
18 P4 KF YSU WSM6 RRTM/D
19 P5 KF YSU WSM6 RRTM/D
20 P7 KF YSU WSM6 RRTM/D
21 P8 KF YSU WSM6 RRTM/D
22 P10 KF YSU WSM6 RRTM/D

Note: GEFS is the GFS Ensemble Forecast System. Abbreviations for the options are defined in Section 3.2. RRTM/D refers to
RRTM/Dudhia.

3.1.2. Hydrology

CREST is a grid-based, distributed hydrologic
model developed jointly by the University of Okla-
homa and the NASA SERVIR Project. CREST sim-
ulates the spatial and temporal variation of water and
energy fluxes, as well as changes in storage, on a regu-
lar grid. Both global- and regional-scale applications
are accommodated through subgrid representation
of soil moisture storage capacity and runoff processes
(using linear reservoirs or kinematic wave). CREST
can be forced by gridded potential evapotranspira-
tion and precipitation data sets from satellite-based
estimates, rain gauge observations, weather radar, or
combination thereof, in addition to QPFs from nu-
merical weather prediction models. Primary water
fluxes, such as infiltration and routing, are closely re-
lated to land surface characteristics. The runoff gen-
eration component and routing scheme are coupled,
thus providing realistic interactions between atmo-
spheric, surface, and subsurface water. Instead of the
Sacramento Soil Moisture Accounting Model (SAC-
SMA) (Burnash, Ferral, & McGuire, 1973), CREST
partitions the incoming rainfall into surface runoff
and infiltration using the variable infiltration capac-
ity curve (VIC) concept, which was developed in the
Xinanjiang model (Zhao, 1992; Zhao, Zhuang, Fang,

Liu, & Zhang, 1980) and the VIC model (Liang,
Lettenmaier, Wood, & Burges, 1994; Liang, Wood,
& Lettenmaier, 1996). These latter two models are
more phenomenological and do not require the large
number of parameters in their calibration, whereas
the SAC-SMA model does.

For the case study, the flow direction information
was obtained from a digital elevation model based on
the National Elevation Dataset (NED) (Gesch et al.,
2002). We also used the climatological mean monthly
potential evapotranspiration data (Koren et al.,
2004). The STATSGO data set (Miller & White,
1998) provides several hydrologic model parameters
for the model, including the soil water capacity, infil-
tration curve exponent, and hydraulic conductivity.
Other hydrologic model parameters derived for, or
used in, this model can be found in Vergara et al.
(2016). For the case study herein, CREST’s spa-
tial resolution was set at 250 m, incorporating high-
resolution topography, land use, and soil information
maps for the target Tar/Neuse watersheds in eastern
NC. The CREST model was run with precipitation
input from the ensemble set shown in Table II to pro-
duce riverine flows for use in the ADCIRC model.

Data sets related to soil properties, land cover,
and land use were used to form a priori estimates
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of CREST model parameters (Vergara et al., 2016).
With this approach, model calibration to site-specific
observations is not needed. The configured model
was assessed using the Stage 4 radar quantitative
precipitation estimates (the name given to the
NOAA precipitation reanalysis from multisensors,
e.g., gauges and radars) (Lin & Mitchell, 2005) as the
surface boundary condition to CREST for Hurricane
Isabel. Vergara et al. (2016) discuss the validity of
this approach, particularly for ungaged locations
in the watershed. Furthermore, in the current ap-
plication, model uncertainty is addressed through
the ensemble approach taken for the mesoscale
meteorological simulations with WRF.

3.1.3. Storm Surge

The storm surge and wave simulations are con-
ducted using the ADCIRC model, which solves a
form of the shallow water wave equations, using
linear, triangular finite elements in space, and a
three-level finite difference discretization in time.
We use ADCIRC in its two-dimensional, vertically
integrated form. Land elevations and water bot-
tom depths, frictional characteristics, land roughness
lengths, and canopy cover are specified at each model
node, using available digital elevation models and
land cover databases, such as the USGS National
Elevation Model (Gesch et al., 2002) and the Na-
tional Land Cover Database (Homer, Fry, & Barnes,
2012). Spatial and temporal fields for 10-m wind ve-
locity and atmospheric pressure are required as in-
puts. ADCIRC computes radiation stress gradient
forcing via ADCIRC’s direct coupling to the finite-
element version of SWAN (Dietrich et al., 2011;
Zijlema, 2010) to account for effects of wave setup
on coastal water levels.

ADCIRC computes the “total” water level by
simulating the coupled storm surge and tide water
levels, downstream river flow and associated water
levels, and contributions from wave-induced setup.
The output from all three models, for each ensemble
member, is then processed for input into the evacu-
ation model. The evacuation model (Davidson et al.,
2020) operates on larger geographic zones (on the or-
der of zip code zones), so the hazard model output
must be aggregated onto this coarser spatial scale.

For each simulation in the case study, the AD-
CIRC model is started from rest 45 days prior to in-
gesting the meteorological fields, with tidal bound-
ary conditions for the M2, N2, S2, K2, K1, O1, P1,
and Q1 constituents extracted from the Topex Posei-

don global tidal solutions (Egbert & Erofeeva, 2002)
(version 7.2) and applied at the open boundary. The
tidal forcing amplitude and phase are adjusted from
the equilibrium values to the specific start of the sim-
ulation, a 10-day ramp is applied, and a time step
of 0.5 s is used due to the high spatial resolution.
The model domain covers the North Atlantic region
west of 60oW, with very high spatial resolution in the
NC area to support coastal inundation needed for
the evacuation model (Fig. 1). The eastern bound-
ary is the only open boundary where the tidal forcing
is applied. ADCIRC’s triangular finite element grid
is 50 km offshore to about 20–50 m in the upper
reaches of the coastal rivers (where CREST river
flows are used as upstream boundary conditions).
The ADCIRC grid covers the land area up to about
the 15 m land contour.

3.2. Ensemble Scenario Generation

For this study, we assume that the primary uncer-
tainty in simulating water levels and wind speeds for
the evacuation model arises from imperfect knowl-
edge of the meteorological fields used to drive the
hydrological and storm surge models. This assump-
tion is reasonable, as previous studies (Peng et al.,
2004; Zhong, Li, & Zhang, 2010) have found that sim-
ulated storm surge in the Chesapeake Bay and NC
estuary systems was strongly influenced by a storm’s
track and intensity. In neither study were parameters
in the storm surge model varied, and precipitation-
driven river flows were not considered. In our haz-
ard modeling system, we have used the best available
data sources for topography, bathymetry, land cover,
and other fields for the hydrological and storm surge
models. This will facilitate future studies on multiple
sources of uncertainty and impacts on the total water-
level hazard.

We represent uncertainty in hurricane predic-
tions through two sources: (1) imperfect knowledge
of the atmosphere used to initialize the meteoro-
logical model, and (2) the physics/dynamics assump-
tions taken when selecting various options for the
meteorological model simulations. We construct an
ensemble of meteorological simulations that capture
this uncertainty by selecting atmospheric states and
different physics options.

In general, there are several possible sources for
initial and boundary data for the WRF ensemble. For
contemporary, real-time operations, global ensemble
simulations, such as Global Ensemble Forecast Sys-
tem (GEFS) (Whitaker, Hamill, Wei, Song, & Toth,
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2008) or the European Centre for Medium-Range
Forecasting (ECMWF) system (Molteni, Buizza,
Palmer, & Petroliagis, 1996), can be used as data
sources. However, their availability does not extend
back before 2008. Therefore, we constructed an en-
semble of meteorological simulations to reflect this
uncertainty by using the 11-member GEFS Refore-
cast (GEFS-R) (Hamill et al., 2013) at 1-degree grid
spacing for initial and boundary condition data. The
reforecast is a long-running sequence (December
1984 to present) of simulations of the atmosphere
that produces historical weather forecasts for re-
search, using a recent version of the GEFS.

We constructed a 22-member ensemble of mete-
orological simulations to account for uncertainty by
using the 11-member GEFS-R members described
above. We combined these 11 members with 11
different physics option combinations to create a
22-member ensemble. Table II summarizes the per-
mutations on WRF model physics and initial and
boundary data for the ensemble. Ensemble mem-
bers 1–11 correspond to the 11-member GEFS-
R, and each is run with different combinations
of the cumulus, planetary boundary layer, micro-
physics, and radiation options available in WRF.
Ensemble members 12–16 use the first GEFS-R
member and different physics options, and mem-
bers 17–22 use the same physics options (KF,
YSU, and WSM6) with six different GEFS-R en-
semble members (P2, P4, P5, P7, P8, and P10).
Initial and boundary conditions for WRF are
extracted from the GEFS-R output data every
6 hours starting at 0000 UTC. Sea surface tempera-
tures also have several possible sources, and for the
case study, we used the 1/12th degree sea surface
temperature data from the National Centers for En-
vironmental Prediction (NCEP) for the closest 0000
UTC time to initialization.

To determine our choices of the different model-
physics-based ensemble members (Table II), we
conducted a review of several previous studies us-
ing WRF for modeling hurricanes (Davis et al.,
2008; Fovell & Su, 2007; Fovell et al., 2016; Li &
Pu, 2009; Nasrollahi et al., 2012; Nolan, Zhang, &
Stern, 2009; Raju, Potty, & Mohanty, 2011; Tao
et al., 2011). Most of these studies tested differ-
ent combinations of two or three of the four model
physics components. For the cumulus parameteriza-
tions, we used the Kain–Fritsch (KF), Betts–Miller–
Janjic (BMJ), and Grell–Dvnyi (GD) schemes. The
KF scheme was chosen since it has been as good
as, if not better than, some of the other cumulus

schemes (Biswas, Bernardet, & Dudhia, 2014). The
Yonsei University (YSU), Mellor–Yamada–Janjic
(MYJ), Bougeault and Lacarrere (BouLac), and
Mellor–Yamada–Nakanishi–Niino level 3 (MYNN3)
schemes were used for the boundary layer physics.
The WRF Single-Moment 6-class (WSM6), Thomp-
son, and Goddard (with graupel), and Morrison
schemes were used for microphysics options. Fovell
et al. (2016) suggested that model hurricane tracks
and intensities are also sensitive to the choice of
radiation physics, which interact with the cloud
microphysics. They have qualitatively tested this in
idealized simulations, using the rapid radiative trans-
fer model (RRTM/Dudhia), an alternate version of
the RRTM for global climate model applications
(RRTMG), and the GFDL schemes, although the
last of these was shown to poorly represent the inter-
actions with deep clouds. We also used the WRF op-
tion that overrides the default formulation of the sur-
face layer over water, which prevents the surface ex-
change coefficients from continuing to increase expo-
nentially with increasing surface winds over 30 m/s.

Finally, given our ensemble-based approach that
reflects the uncertainty inherent in simulating natu-
ral systems, and given the risk-based approach of the
evacuation model, our hazard modeling intent is not
to hindcast historical events as perfectly as possible,
but rather to capture the range of outcomes, short-
term trends, and likely worst-case characteristics. All
three models (WRF, CREST, and ADCIRC) have
been extensively validated and verified in previous
studies, as reflected in the literature cited herein.

4. CASE STUDY—HURRICANE ISABEL
(2003)

NC has a long and destructive history of hur-
ricanes (Barnes, 2013)—a category 2+ hurricane
is expected to impact its coast on average every
3.4 years (Vickery & Blanton, 2008), and at least
tropical storm force winds about once every 2.1 years
(State Climate Office of North Carolina, 2016). The
low-lying coastal plain and adjacent lower piedmont
area has 3.15 million residents, with the coast be-
ing a major tourist destination and eastern NC eco-
nomic driver. This area is characterized by complex
coastal morphology that includes the largest shel-
tered sound system in the United States (Pamlico and
Albemarle Sounds), a thin strip of barrier islands (the
Outer Banks), and large coastal rivers (Tar, Neuse,
Cape Fear). In September 2003, a storm originated
as a tropical wave in the eastern Atlantic Ocean and
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intensified to a category 5 hurricane named Isabel on
September 11 (NOAA/NWS, 2004). On September
18, 2003, 17 UTC (2 p.m. local time), Hurricane Is-
abel made landfall as a substantially weakened but
still destructive category 2 storm near Drum Inlet
on the NC Outer Banks, causing about $170 mil-
lion in insured property damage and three deaths in
NC (Post Buckley Schuh and Jernigan, Inc., 2005). It
is thus a reference storm for hazard modeling due to
extensive observations of water level, winds, waves,
precipitation, and river flow. The evacuation activi-
ties during the event are also well documented (Post
Buckley Schuh and Jernigan, Inc., 2005)

For this Isabel case study, which also serves as
the input for the case study in the companion arti-
cle by Davidson et al. (2020), we applied the hazard
modeling framework described in Section 3 to com-
pute the ensemble. The case study ensemble was ini-
tialized at September 12, 2003 0000 UTC, and WRF
was run for 7 days with surface variables output every
15 minutes. In Section 5, we discuss the implications
of the initialization time.

4.1. Ensemble Performance and Characteristics

4.1.1. Meteorology

The WRF ensemble (Fig. 2) has a wide range
of outcomes that are generally consistent with the
long-range forecast prior to landfall. From this

Fig. 2. Hurricane tracks for the 22-member ensemble computed
for the Hurricane Isabel (2003) case study, and the best track
(red) for the time period of the ensemble simulation initialized
at September 12, 2003 0000 UTC, approximately 7 days prior to
landfall. Daily positions of the ensemble tracks are shown with dif-
ferent symbols, and the ensemble member number is indicated at
the end of each track.

Fig. 3. Central pressure (top) (mb) and maximum wind speed
(bottom) (kts) for the Hurricane Isabel ensemble initialized on
September 12, 2003 0000 UTC. The observed (best track) is shown
with the black line, and the 22-member ensemble mean and stan-
dard deviation are shown in blue.

offshore starting time, several members do not make
landfall and five have relatively slow translation
speeds and are well offshore at day 7. Six members
are approaching the mid-Atlantic coast, and six have
made landfall along the lower NC coast. Ensemble
member (scenario) 5 follows the observed Isabel
best-track path (red in Fig. 2), and makes landfall
very near to the actual location near Drum Inlet,
although somewhat slower and less intense than
the actual hurricane. The simulated hurricane in-
tensity, as reflected in the central pressure relative
to the ambient atmospheric pressure, is shown in
Fig. 3.

All ensemble members have initial pressures sig-
nificantly higher that the observed hurricane’s pres-
sure, indicating a relatively weak cyclone in the
GEFS reforecast at that time. However, as the hurri-
canes evolve, the central pressures drop and bracket
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the observed pressure by hour 80. Maximum sus-
tained wind speeds (Fig. 3) show a similar behav-
ior, with very low speeds at initialization and gen-
eral agreement by hour 100. The deintensification
in storm intensity (rapid increase in central pres-
sure and decrease in maximum wind speeds) once
the storm reaches land, at about hour 160, is evi-
dent in the observations (best track), but it is not as
pronounced in the ensemble average. A few mem-
bers that have made landfall do reflect this intensity
decrease. This well-known phenomenon (Kaplan &
DeMaria, 1995, 2001; Powell & Houston, 1996; Tu-
leya, Bender, & Kurihara, 1984; Vickery, 2005; Vick-
ery & Twisdale, 1995) is due to the loss of thermal
energy and the significant increase in surface rough-
ness as the storm encounters land, and it is critical for
models to capture because the maximum sustained
wind speed on land is an important consideration in
the hurricane evacuation decision-making process.

4.1.2. Hydrology

For each WRF ensemble member for Hurricane
Isabel, CREST was initiated with a year-long simula-
tion using Stage 4 radar products and then switched
over to the WRF prediction of precipitation, emulat-
ing how the system would be configured in a fore-
casting application. As part of the data processing,
the 12-km WRF ensemble members are downscaled
to the 250-m CREST grid. For each CREST simula-
tion, the QPF from WRF is used for the 7 days pro-
vided and no additional rainfall is included after the
7 days. However, the hydrologic model is run for sev-
eral days after the QPF ends in order to capture the
subsequent downstream routing of the runoff that
occurs from this rainfall event. This additional re-
sponse time is needed, as the drainage area is about
2,400 km2 and the basins have an elongated shape. It
should also be noted that the first peak seen in the
streamflow results is actually a combination of the
WRF-QPFs and the initial state provide by the Stage
4 derived precipitation.

The precipitation estimates for the WRF en-
semble mean associated with the 7-day forecast
period are shown in Fig. 4 for the western Atlantic
and eastern United States and a closeup of the
Tar-Pamlico and Neuse River basins for the same
forecast periods. Fig. 5 shows the basin-averaged
rainfall intensities for the two different watersheds
for all the ensemble members, along with their
mean (blue) and the Stage 4 (red) precipitation
measurement. From these figures, it is evident that

Fig. 4. (Left) Precipitation estimates (cumulative amounts, in
mm) from the atmospheric model, WRF, for Hurricane Isabel for
the initialization time of September 12, 2003 0000 UTC. (Right)
closeup (basin outlined in black in left) of total precipitation from
the same forecast period with the outline of the Tar-Pamlico and
Neuse River basins. Note that the displayed color range is differ-
ent in each figure.

Fig. 5. Rainfall (basin-averaged) intensity (mm/hour) from the at-
mospheric model, WRF, for Hurricane Isabel for the Tar River
basin (top) and the Neuse River basin (bottom) for the initializa-
tion time of September 12, 0000 UTC. The red line indicates the
rainfall intensities from the Stage 4 radar, the gray lines provide
the results from each of the 22 ensembles, and the blue line is the
mean of the 22 ensemble results.

several of the ensemble members predict rainfall
intensities that exceed the actual Stage 4 radar in-
formation. This increase in rainfall intensity is likely
due to the overestimation of the hurricane intensity
by WRF between hours 96 and 140 (Fig. 3), thus
leading to the increase in the rainfall amounts. This
is especially evident in the Neuse River basin (gray
lines in Fig. 5b), where there is a threefold increase
in the rainfall intensities (as compared to observed)
for some of the ensemble members. However, even
with these few outliers on the high side, there is an
overall underestimation of the rainfall intensity when
looking at all of the ensemble members for both
river basins (cf. the ensemble mean [blue lines] in
Fig. 5).
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Fig. 6. Streamflow (in m3/s) in the Tar River at the USGS stream
gauge 02082585 (a) and Fishing Creek at the USGS stream gauge
02083000 (b) for Hurricane Isabel for the initialization time of
September 12 0000 UTC. Gray lines are flows for each of the 22 en-
semble members. Note that some members do not produce appre-
ciable overland precipitation fields and hence no streamflow. Blue
lines are modeled flows using Stage 4 radar quantitative precipi-
tation estimates. Black lines are the observed streamflow during
Hurricane Isabel. The vertical dashed line denotes the hurricane’s
observed landfall time.

Fig. 7. Same as Fig. 6, except for the Neuse River at the USGS
stream gauge 02089000 (a) and Contentnea Creek at the USGS
steam gauge 02091500.

This precipitation field is then used in CREST to
obtain the streamflow estimates. Ensemble members
that predict the hurricane will stay far offshore pro-
duce no significant overland precipitation, and hence
very small river flows. Figs. 6 and 7 show the hy-
drographs for each of the ensemble members, along
with the hydrograph produced by the Stage 4 radar
quantitative precipitation estimate, for the Tar and
Neuse rivers and tributaries, respectively, included in
CREST. Also shown are the observations from the

USGS gauge site (black). In these results, we can see
the influence of the overprediction of the rainfall in-
tensities (gray lines in Fig. 5) with the overestimation
of the streamflows. However, it should be noted that
the streamflow produced by the Stage 4 radar precip-
itation estimate (blue line) closely follows the trend
of the observations at the different gauge locations,
thus validating the use of the a priori approach for
selecting parameters, documented in Vergara et al.
(2016). It is clear that an accurate hurricane track and
precipitation forecast is one of the most critical ele-
ments for accurate streamflow modeling.

An important observation from these results
is that the WRF precipitation estimates may vary
widely in intensity and spatial distribution, but the
ensemble developed from the estimates captures
the general behavior of the streamflow observations
from Hurricane Isabel. Thus, the ensemble method-
ology provides a representative probabilistic assess-
ment for the riverine streamflows to be used by the
coastal storm surge model, along with the evacuation
model described in the companion article.

4.1.3. Storm Surge

We now compare the storm surge response to
NOAA water-level gauge locations that were ac-
tive during Hurricane Isabel (Fig. 8). This includes

Fig. 8. Time series of observed (black) and simulated (gray) water
level for Hurricane Isabel case #1, initialized at September 12 0000
UTC, at four NOAA water-level gauges in coastal NC. The first
four simulation days are not shown.
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Fig. 9. Inundation time series at each ADCIRC model node (gray)
in an evacuation zone in Pamlico Sound and the aggregated inun-
dation level for that zone (black). The aggregated level is the 5%
chance exceedance level given all of the wetted ADCIRC nodes
at that time level. Since the evacuation zones are entirely on land,
most of the ADCIRC nodes in the zone are dry during the simula-
tion except when the storm is approaching the coast (about a day
prior to landfall). The small bump at about mid-day on September
12 is due to down-river flow from precipitation used to start the
CREST model.

gauges at Duck, Oregon Inlet Marina, Beaufort, and
Wilmington (about 50 km up the Cape Fear River).
Verified hourly water levels (surge + tide) in MSL
showed peak storm surge levels of about 2 m at Duck,
well to the north of the landfall location. Oregon In-
let showed a peak surge delayed by about 12 hours,
which is expected due to the gauge location being
well behind the barrier island. There is effectively
no observed storm surge at Wilmington, which is far
from the observed storm path and substantially up
the Cape Fear River. Most of the ensemble mem-
bers show only small surge levels, with about five
showing larger and later surges than observed. En-
semble member 5 shows a peak level of 1.8 m that
occurred early by about 12 hours. While the observed
Hurricane Isabel showed no impacts in the Wilming-

ton River, several ensemble members indicate that
water levels above the tide level (and possible evac-
uation considerations) are possible. The modeled
storm surges generally bracket the observed water
level, although there are clearly peak arrival time dif-
ferences directly related to the dispersion, intensity
variation, and forward speed variation of the ensem-
ble hurricanes, particularly noted at Duck.

4.2. Aggregation

As noted in Section 3.1.3, the final step for each
ensemble simulation is to aggregate the hazard re-
sults onto the evacuation model spatial grid. Zones
are considered inundated if, at any time level, at least
10% of a zone’s surface area is wetted by the pre-
dicted ADCIRC water-level field. An example of this
aggregation step is shown in Fig. 9, where the water-
level time series for every ADCIRC node within an
evacuation zone is used to construct a representative
water-level curve of the 5% chance exceedance in-
undation level in that zone. The zone-level hazard
data are used in the evacuation modeling process to
create spatial maps of the hazards (inundation level
and wind speeds) at each 15-minute time step. Fig. 10
shows an example of these maps for one time step.

5. DISCUSSION

The case study described above shows several
interesting features that relate to the spread or dis-
persion of the hurricane paths and intensity within
the ensemble set. Uncertainty of the hurricane path
at the 7-day lead time is large enough that there
is a strong threat to the middle (Beaufort) and

Fig. 10. Hazard maps for evacuation model zones (black outlines) at the time of the highest inundation level for ensemble member (sce-
nario) 5. The hurricane track is shown with the black line. (a) Aggregated inundation level (5% chance exceedance level) in each evacuation
model zone. (b) WRF winds in each zone, as well as contours of sea-level pressure in millibars (for reference only, not used by the evacuation
model).
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Fig. 11. Hurricane Isabel track forecasts for several operational
models, for the initialization times of September 12 0000 UTC
(top) and September 17 0000 UTC (bottom). Colored lines are
the tracks for CLP5, GFDL, BAMS, UKM, LBAR, and NHC98,
with the heavy black line being the official (OFCL) NHC forecast
track. The red line is the NHC best track (BT) for Isabel. Gray
lines are the 22 ensemble members for this project. Symbols on
each forecast model track indicate the 0-, 12-, 24-, 36-, 48-, 72-, 96-,
and 120- hour forecast positions. These hour positions are specif-
ically labeled on the best track. Track error variance ellipses are
drawn at each forecast hour position.

southern NC coast and Cape Fear River areas
(Wilmington), consistent with the diversity of meteo-
rological outcomes in this case. Our ensemble spread
is qualitatively compared to the actual meteorolog-
ical model forecasts for this initialization time in
Fig. 11, which shows several official forecast model
tracks used operationally by the NHC, as well as the
NHC best track in red (determined after the storm
event). The NHC forecast tracks generally follow the

best track until about day 4 (96 hours), at which
time the models begin to follow different trajecto-
ries. Track error variance ellipses have been drawn
using the standard deviation of the differences be-
tween the forecast model track positions and the best
track positions. At any specific prediction time, about
two-thirds of the track positions fall within the el-
lipse. This is analogous to the “cone of uncertainty”
used by NHC to describe likely (at the 66.6% chance
level) storm eye locations. In this analysis, we have
included the 5-day climatology and persistence pre-
diction (CLP5) model (Knaff, DeMaria, Sampson, &
Gross, 2003) that reflects longer term tendency of
hurricane evolution toward climatology.

The evacuation model described in the com-
panion article (Davidson et al., 2020) requires as
input a single ensemble developed with one initial-
ization time. The main benefit of an ensemble mod-
eling approach is that it allows the evacuation model
to explicitly address uncertainty in hurricane evolu-
tion and thereby determine a tree of risk-based evac-
uation order recommendations, each of which is con-
ditional on how the hurricane evolves to that point
in time. It thus makes the most use of the informa-
tion available within each forecast. Nevertheless, as
with any evacuation decision support model, when a
new hazard forecast becomes available, the one de-
scribed in Davidson et al. (2020) can be rerun and a
new updated tree of recommendations can be gener-
ated. As with NHC forecasts, we expect that as lead
time diminishes (i.e., a storm approaches shore), the
uncertainty predicted by this hazard framework will
generally decrease.

To illustrate the improvement in predictability
as the landfall lead time decreases, we consider a
second ensemble set, this one initialized at Septem-
ber 17, 2003 0000 UTC, 5 days later than the one
in Section 4, and about 1.5 days prior to landfall.
The ensemble mean minimum sea-level pressure and
maximum wind speeds are shown in Fig. 12. By this
time, the initial condition pressures and wind speeds
in the GEFS ensembles are much more reflective
of the observed pressure and generally bracket the
pressure and speed by hour 30, just prior to land-
fall. The rapid increase in minimum pressure and
decrease in wind speeds is clearly seen starting at
hour 40.

The tracks for this set are shown in Fig. 11 (bot-
tom), along with NHC forecast models and best track
in red. The forecast tracks are generally centered
about the best track, with a slight bias to the right.
Note that the forecast model track error variance



130 Blanton et al.

Fig. 12. Same as Fig. 3 except for the initialization time of Septem-
ber 17 0000 UTC. The run duration is shorter for this start time,
only 2.5 days compared to 7 days at the earlier start time.

ellipses are more aligned with the mean track direc-
tion, indicating that the forward speed of the forecast
storm positions is larger relative to a directional er-
ror when compared to the track dispersion from the
ensemble initialized at the earlier 7-day lead time.
The CLP5 climatology track is clearly influencing this
error characterization in both cases, but still serves
as a useful indicator of the climatological tendency
of hurricane tracks to curve to the north east in the
North Atlantic Basin.

The closer landfall lead time also significantly
improves the WRF precipitation and subsequent hy-
drologic model predictions. Fig. 13 summarizes the
basin-average rainfall intensities for the Tar and
Neuse basins. There is an improvement in the ensem-
ble mean capturing the rainfall intensities by compar-
ing to the Stage 4 radar precipitation (cf. blue and red

Fig. 13. Rainfall (basin-averaged) intensities (in mm/hour) from
the atmospheric model, WRF, for Hurricane Isabel for the Tar
River basin (a) and the Neuse River basin (b) for the initializa-
tion time of September 17 0000 UTC. The red line indicates the
rainfall intensities from the Stage 4 radar, the gray lines provide
the results from each of the 22 ensembles, and the blue line is the
mean of the 22 ensemble results.

lines in Fig. 13), but there is still some overprediction
in the rainfall intensities by a few of the ensemble
members. Fig. 13 shows the streamflow for the Tar
River using these ensemble precipitation estimates,
along with the streamflow based on the Stage 4 radar
quantitative precipitation estimates (blue line) and
the USGS observed (black lines). As can be seen
in Fig. 13, some ensemble members overpredict the
streamflow due to the overestimation of the rainfall
intensities (gray lines in Fig. 13). However, overall,
we see that for many of the ensemble members, the
modeled results represent observed results. Similar
results (not shown) occur in the Neuse River. An ex-
ception is the shape of the hydrograph for Fishing
Creek, which has an extended recession time (Fig. 13
bottom, black line after September 22); we believe
that this is attributable to groundwater interflow not
being captured by the hydrologic model. In partic-
ular, CREST only simulates vertical infiltration, not
lateral groundwater flow. Thus, in low-lying regions
with high groundwater tables, interflow can lead to a
slight damping of the peak and a delayed release of
water to the stream after the storm has passed.

The resulting storm surge for this ensemble is
shown in Fig. 14. The threat to the northern NC
coast is still substantial, and the relative timing of the
storm surge peak is now more consistent with the ob-
served peak timing, although overprediction of the
peak occurs for storms that are to the right (north)
of the best track. Additionally, the tracks to the left
(south) of the observed track indicate that the middle
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Fig. 14. Time series of observed (black) and simulated (gray) wa-
ter level for Hurricane Isabel case initialized at 0000 UTC Septem-
ber 17, at four NOAA water-level gauges in coastal NC.

(Beaufort) and lower (Wilmington) areas are still
threatened.

6. CONCLUSIONS

This article is the second of two that describes a
new ensemble-based framework for hurricane evac-
uation modeling. This new, risk-based approach to
evacuation modeling requires a probabilistic de-
scription of the hazard, which was not previously
available at very high spatial and temporal reso-
lution. It is provided here by the coupled, ensem-
ble meteorological—hydrologic—storm surge model
simulations. Herein we have focused on a description
of the hazard modeling and ensemble specification
and characteristics, application, and usage of which
are described in Part 1 (Davidson et al., 2020) using
Hurricane Isabel (2003) and its impacts in NC as a
case study. The hazard simulations involve loosely
coupled modeling of hurricanes and related precip-
itation, runoff, and storm surge. Much of the un-
certainty is assumed to stem from errors in initial
and boundary condition data and physics implemen-
tations in the WRF, and this uncertainty is propa-
gated through the system via an ensemble of hurri-
cane simulations using the WRF, CREST, and AD-

CIRC hazard models. The overall fidelity of the en-
semble results is strongly dependent on the accuracy
of the meteorological ensemble members, which im-
proves with decreasing lead time. The ensemble en-
velope brackets the observed (best) track and pro-
vides “best-case” and “worst-case” end-members for
the evacuation component of the modeling frame-
work. While we have concentrated on a historical
event due to the availability of information on the
evacuation activities that took place, the methods
are equally applicable to more contemporary events
for which more accurate initialization data are avail-
able from a variety of sources. Ongoing efforts by
this group include extensive validation analyses of
all model components, experiments and sensitivity
analyses with higher resolution (4 km) WRF ensem-
ble members, extension of the ensemble method to
include perturbations in the hydrologic and storm
surge models, studies with more recent hurricane
events, such as Hurricane Matthew (2016), and hard-
ening and streamlining of the approach for use in a
research forecasting mode. These activities will be re-
ported on in future papers.
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